ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ

УДК 62-83:621.313

DOI 10.46960/2658-6754_2022_1_04

ПРОЕКТИРОВАНИЕ ИНДУКТОРНОГО ДВИГАТЕЛЯ С САМОВОЗБУЖДЕНИЕМ ДЛЯ ШАГОВОГО ПРИВОДА РЕГУЛИРУЮЩЕГО ОРГАНА

А.Ю. Смирнов

Нижегородский государственный технический университет им. Р.Е. Алексеева Нижний Новгород, Россия Опытное конструкторское Бюро Машиностроения им. И.И. Африкантова Нижний Новгород, Россия Национальный исследовательский технологический университет «МИСиС» Нижегородская область, г. Выкса, р.п. Шиморское, Россия e-mail: a_yu_smirnov@mail.ru

Д.А. Кудряшов

Нижегородский государственный технический университет им. Р.Е. Алексеева Нижний Новгород, Россия Опытное конструкторское Бюро Машиностроения им. И.И. Африкантова Нижний Новгород, Россия e-mail: kud1904@rambler.ru

Т.Н. Уснунц-Кригер

Национальный исследовательский технологический университет «МИСиС» Нижегородская область, г. Выкса, р.п. Шиморское, Россия e-mail: usnuntskriger@mail.ru

Предложена методика проектирования явнополюсных индукторных двигателей с возбуждением от постоянной составляющей тока в фазах, которая дополнена нелинейным расчетом магнитной цепи графоаналитическим методом, до и после перемещения ротора из положения максимальной магнитной проводимости воздушного зазора на половину зубцового деления в положение минимальной проводимости воздушного зазора. Введение нелинейной модели расчета магнитной цепи в алгоритм проектирования позволило уточнить рабочие проекты двигателей и подтвердить их заявленные характеристики в электроприводах, предназначенных для позиционирования регулирующих органов ядерных ректоров. Отмечается, что размагничивание ферромагнитных участков магнитной цепи, которое устанавливается расчетом на нелинейной модели, после поворота ротора на половину зубцового деления из соосного положения, является критерием правильности выбора геометрических параметров зубцовой зоны и электромагнитных нагрузок.

Ключевые слова: графоаналитический метод расчета магнитной цепи, зубцовая зона, индукторная машина, индукторный двигатель, расточка статора, электромагнитный момент.

Для цитирования: Смирнов, А.Ю. Проектирование индукторного двигателя с самовозбуждением для шагового привода регулирующего органа / А.Ю. Смирнов, Д.А. Кудряшов, Т.Н.Уснунц-Кригер // Интеллектуальная Электротехника. 2022. №1. С. 4-15. DOI: 10.46960/2658-6754_2022_1_04

SELF-EXCITATING INDUCTOR MOTORS FOR CONTROL ROD STEP DRIVES DESIGN

A.Yu. Smirnov

Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod, Russia JSC «Afrikantov OKBM» Nizhny Novgorod, Russia Национальный исследовательский технологический университет «МИСиС» Nizhny Novgorod region, Vyksa, Shimorskoye, Russia e-mail: a yu smirnov@mail.ru

D.A. Kudryashov

Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod, Russia JSC «Afrikantov OKBM» Nizhny Novgorod, Russia e-mail: kud1904@rambler.ru

T.N. Usnunts-Kriger

Vyksa Branch of the National University of Science and Technology «MISiS» Nizhny Novgorod region, Vyksa, Shimorskoye, Russia e-mail: usnuntskriger@mail.ru

Abstract. The methodology for salient pole inductor motors design with excitation from phase's current constant component described, which added by nonlinear magnetic circuit calculation via graphic-analytical method before and after of rotor displacement from position of maximum magnetic conductivity to position of minimum air gap magnetic conductivity. Taking into consideration of nonlinear magnetic circuit model permitted to refine motor's working projects and vindicate their characteristics for control rod position electric drives of nuclear reactors application. It is noticed, that demagnetization of ferromagnetic areas of magnetic circuit, which determines by means of non-linear model calculation after half tooth division rotor turning from coaxial with stator teeth position, may be accepted as a criteria validity of electromagnetic loads and geometric tooth area parameters.

Keywords: electromagnetic torque, graph-analytical method of magnetic circuit calculation, inductor machine, inductor motor, stator bore, tooth zone.

For citation: A.Yu. Smirnov, D.A. Kudryashov and T.N. Usnunts-Kriger, "Self-excitating inductor motors for control rod step drives design", *Smart Electrical Engineering*, no. 1, pp. 4-15, 2022. DOI: 10.46960/2658-6754_2022_1_04

I. Введение

В системах точного позиционирования регулирующих органов ядерных энергетических установок получили распространение синхронные двигатели индукторного типа. Данный двигатель содержит зубчатый статор с расположенной на нем многофазной (четырехфазной) обмоткой и зубчатый ротор. В силу неизменности направления тока в фазах эта же обмотка образует и поле возбуждения.

В магнитную цепь этого двигателя внедрена герметизирующая труба, отделяющая полость ротора от полости статора. Для уменьшения магнитного сопротивления в местах примыкания к статорным полюсам в герметизирующую трубу вварены магнитомягкие вставки из нержавеющей стали (рис. 1).

Рис. 1. Схема конструкции двигателя (фрагмент магнитной цепи) Fig. 1. Scheme of the engine design (fragment of the magnetic circuit)

Ротор двигателя представляет собой зубчатый магнитопровод, выполненный из магнитомягкой стали. Число зубцов на роторе находится в соответствии с числом зубцов на статоре, определяемом конструктивными соотношениями, приемлемыми для машин данного типа [1, 2].

II. Проектирование индукторного двигателя

Алгоритм проектирования машины базируется на использовании уравнения, известные из теории электрических машин, определяющие зависимость между внутренним диаметром статора D, длиной его пакета вдоль зазора l_{δ} , вращающим моментом на валу M и электромагнитными нагрузками (линейной нагрузкой A и индукцией в зазоре B_{δ}) машины [3, 4]. Исходя из этой зависимости, можно записать:

$$\frac{D^2 l_\delta^2}{M} = \frac{1}{B_\delta A},\tag{1}$$

где значения индукции в зазоре принимаются в пределах от $B_{\delta} = 0,7$ Тл до $B_{\delta} = 0,95$ Тл. Значения линейной нагрузки – в пределах от A = 14 кА/м до A = 50 кА/м. При этом в шаговом приводе диаметр D известен заранее. Он устанавливается, исходя из оптимального соотношения момента инерции вращающихся масс привода, приведенного к валу двигателя, и момента инерции его ротора [5].

Для определения площади пазов под обмотку и наружного диаметра магнитопровода статора заранее назначаются значения плотности тока *j* и коэффициента насыщения. В машинах с электромагнитным возбуждением он находится в пределах от $K_{\rm H}$ = 1,30 до $K_{\rm H}$ = 1,70.

Далее реализуется методика определения радиального размера пазов, потребного для размещения проводов, общая площадь меди которых составляет:

$$S_{\rm M} = \frac{\pi DAK_{\rm H}}{2Z_{\rm I}j}.$$
 (2)

В методике реализуется решение квадратного уравнения, с коэффициентами, представляющими квадратичную, линейную и независимую функции высоты паза. Эти коэффициенты зависят от долей площади паза, заполненных проводами и заполненных изоляцией. Учитывается также уменьшение его площади под влиянием припуска на сборку пакета магнитопровода.

После нахождения высоты пазов под обмотку определяются остальные размеры поперечного сечения магнитопровода, в том числе внешний диаметр. Вычисляются длина вылета лобовых частей обмотки и габаритный размер двигателя в осевом направлении. Затем выполняется расчет магнитной цепи по модели, которая учитывает нелинейность стальных участков. В ее состав (рис. 2) входят магнитные проводимости следующих участков магнитной цепи:

– полюса статора Λ_{π} и участков ярма к нему примыкающих Λ_{s} ;

– полюсного наконечника статора $\Lambda_{\mbox{\tiny IIH}};$

– зазора между статором и ротором Λ_δ;

– областей замыкания потока рассеяния, пересекающего пазы, в том числе по полюсным наконечникам, и охватывающего лобовых части Λ_{σ} ;

– зубцов ротора в пределах одного полюсного деления статора Λ_{zp} .

Рис. 2. Расчетная схема замещения магнитной цепи индукторного двигателя

Fig. 2. Calculation scheme for the replacement of the magnetic circuit of an inductor motor

Магнитный поток по этой схеме замещения удобно определять, используя известный графоаналитический метод [6]. Он подходит для расчета малоразветвленных магнитных цепей. В соответствии с ним вычисления проводятся по алгоритму, предусматривающему выполнение следующих процедур:

a) расчет кривых намагничивания зубцов и спинки статора, исходя из кривой намагничивания электротехнической стали;

б) построение общей кривой намагничивания для зубцов, спинки и полюсных наконечников статора в результате суммирования значений МДС этих участков, найденных при одинаковых значениях потока;

в) пересчет кривой намагничивания зубцов ротора из характеристики намагничивания магнитного материала ротора;

c) определение общей характеристики намагничивания для стальных участков магнитной цепи $F_{\rm Fe}(\Phi)$ суммированием значений аргумента кривых, полученных при выполнении пунктов δ и s;

e) расчет линейной проводимости для потока через зазор между статором и ротором под полюсным наконечником статора, который выполняется при расположении зубцов статора и ротора напротив друг друга Λ_{δ} ;

 \mathscr{K}) определение наибольшего потока в зазоре между статором и ротором по ординате точки пересечения характеристики $F_{\text{Fe}}(\Phi)$ и прямой, характеризующей зависимость максимального магнитного потока в зазоре $\Phi_{\delta max}$:

$$F_{\delta} = F_{\kappa} - \frac{\Phi_{\delta 1}}{\Lambda_{\delta} + \Lambda_{\sigma}},\tag{3}$$

где F_{κ} – МДС одной катушки обмотки, предварительно рассчитанная, исходя из принятых линейной нагрузки A (в Амперах на метр окружности внутреннего диаметра статора) и плотности тока j (в А/мм²).

Построения, отражающие изложенную последовательность графоаналитического решения нелинейного уравнения магнитной цепи машины, показаны на рис. 3. Здесь кривая *1* представляет собой сумму падений магнитного напряжения на всех ферромагнитных участках магнитной цепи двигателя. Верхняя и нижняя прямые представляют проводимость воздушного зазора. Они получены при совпадении оси фазы обмотки и оси зубца ротора и при совпадении ес с осью паза ротора соответственно.

Рис. 3. Графоаналитическое решение нелинейного уравнения магнитной цепи явнополюсной машины

Fig. 3. Graphic-analytical solution of the nonlinear equation of the magnetic circuit of a salient-pole machine

III. Результаты проектирования

Последовательность и основные результаты проектировочного расчета двигателя представлены в табл. 1. Расчетная (проектировочная) схема двигателя представлена на рис. 1, где приняты следующие обозначения размеров:

 $D_{\rm p}$ – диаметр ротора;

*b*_{сп} – толщина спинки (ярма) магнитопровода статора;

*b*_с – ширина зубца статора;

 b_{nep} – длина дуги перекрытия границ полюсного наконечника полюса статора и зубца ротора в положении наибольшей проводимости зазора;

*b*_{пн} – ширина полюсного наконечника (магнитомягкой вставки) в герметизирующей трубе статора;

 $h_{\rm nc}$ – высота полюсного наконечника статора;

*h*_{кл} – толщина пазового клина;

 $D_{\rm n}$ – диаметр статора по внутренней поверхности полюсов (диаметр расточки);

*D*_{нар} – наружный диаметр статора;

*b*_p – ширина зубца ротора;

*h*_{zp} – высота зубца ротора;

δ – радиальный размер воздушного зазора;

*d*_{ср_об} – средний диаметр обмотки;

*h*_{пн} – высота полюсных наконечников.

Таблица 1.

Исходные данные и результаты проектировочного расчета

					Table 1.
Initial c	lata ar	nd result	s of the	design	calculation

Наименование параметра	Значение
Потребный момент на валу, Н·м	12,753
Частота вращения ротора, рад/с (об/мин)	15,5 (150)
Соотношение размеров «Длина/Диаметр» ротора	2,8
Число фаз обмотки статора	4
Число зубцов на статоре	8
Число полюсов обмотки якоря	4
Число зубцов на роторе	6
Обмоточный коэффициент	0,7071
Относительная длина полюсных дуг зубцов статора	0,43
Линейная нагрузка, А/м	22000
Индукция в зазоре, Тл	0,72
Диаметр расточки статора, м	0,08
Осевая длина пакета с учетом толщины нажимных листов, мм	350
Осевая длина ротора, мм	236
Ширина полюсных наконечников статора, мм	13,5
Плотность тока, А/мм2	4,0
Коэффициент насыщения	1,63
Площадь меди обмоточных проводов, мм2	140,09
Коэффициент заполнения паза медью	0,65

Продолжение табл. 1 Table 1 (continued)

Наименование параметра	Значение
Припуск на сборку магнитопровода, мм	0,1
Обмоточный провод (ТУ 16-505.489-78)	ПНЭД-имид
Диаметр обмоточного провода без изоляции, мм	0,75
Площадь сечения обмоточного провода без изоляции, мм ²	0,442
Диаметр изолированного провода, мм	0,804
Площадь, занятая проводами обмотки в пазу, мм ²	317
Число витков катушек на одном зубце (полюсе) статора	318
Ток катушек, расположенных на одном зубце, А	1,767
МДС катушек одного зубца, А	1124
Общая толщина изоляции, мм	1,03
Высота полюсного наконечника, мм	5
Ширина зубца статора, мм	11,5
Толщина пазового клина, мм	1
Площадь изоляции вне зависимости от высоты паза, мм ²	103,64
Площадь изоляции, линейно зависящая от высоты паза, мм	4,736
Высота паза и зубца статора, мм	31,53
Радиальный размер спинки статора, мм	6
Наружный диаметр статора, мм	168
Средний радиус закругления лобовых частей катушек, мм	18,086
Средняя длина витка, м	0,562
Активное сопротивление фазы и катушки при 20°С, Ом	7,075
Активное сопротивление фазы обмотки при рабочей температуре, Ом	10,75
Воздушный зазор, мм	0,25
Диаметр ротора, мм	79,5
Ширина зубца ротора, мм	14
Высота зубца ротора, мм	9,5
Номинальный ток фазы, А	3,534
Амплитуда тока при треугольной форме импульсов, А	6,12
Проводимость рассеяния магнитного потока по полюсным нако- нечникам. Гн	8,268.10-8
Проволимость пазового рассеяния (на олин паз). Гн	$2.485 \cdot 10^{-7}$
Проводимость воздушного зазора под полюсом при совпадении осей зубцов ротора с осью фазы. Гн	1,63.10-5
Амплитуда магнитного потока в зазоре, Вб	4,493.10-3
Средний электромагнитный момент, обеспечиваемый катушками	6,444
Динамический момент при одновременном возбуждении поло- вины фаз. Н.м	12,887
Амплитуда индукции в зазоре, Тл	1,331

Окончание табл. 1 Table 1 (continued)

Наименование параметра	Значение
Амплитуда индуктивности фазы, Гн	0,808
Электромагнитная постоянная времени фазы, с	0,114
Электрические потери в меди обмотки якоря при действующем зна- чении тока, равном номинальному, Вт	268,671
Момент инерции ротора с учетом возможного его увеличения под влиянием подвижных масс привода, кг·м ²	3,915·10 ⁻³
Частота приемистости при идеальном холостом ходе, об/мин	413,3
Наибольшая частота перемагничивания стали магнитопровода статора, Гц	41,33
Масса спинки (ярма) магнитопровода статора, кг	5,484
Потери в спинке (ярме) статора при номинальной частоте, Вт	11,822
Масса зубцов статора, кг	5,047
Масса полюсных наконечников, кг	0,993
Магнитные потери в зубцах статора, Вт	8,392
Магнитные потери в полюсных наконечниках статора, Вт	1,6
Масса зубцов ротора, кг	1,469
Магнитные потери в роторе, Вт	0,084
Сумма магнитных потерь на номинальной частоте, Вт	21,903
Длина статора с учетом вылета лобовых частей, мм	276
Полезная мощность на номинальной частоте, Вт	200,3
Электрический КПД на частоте приемистости	0,408
Постоянная Арнольда (расчет через электрические параметры), м ² /Н	1,32.10-4
Постоянная Арнольда (расчет через механические параметры), м ² /Н	1,183.10-4
Масса меди обмоточных проводов, кг	5,644
Общая масса магнитных материалов статора и ротора, кг	17,016
Общая масса активных частей, кг	22,66
Удельная тепловая нагрузка от электрических потерь в обмотке, A ² /м/мм ² (допустимо не более 1500-2000 A ² /м/мм ²)	1427

Средний электромагнитный момент при повороте ротора на половину зубцового деления из положения наибольшей магнитной проводимости воздушного зазора в результате убыли энергии ветви магнитной цепи с катушками одной фазы:

$$M_{\rm cp} = \frac{1}{2} \left(\Phi_{\rm \delta max} - \Phi_{\rm \delta min} \right) F_{\kappa}^2 \frac{Z_2}{\pi} \frac{Z_1}{m}, \tag{4}$$

где Z_1 и Z_2 – число зубцов на статоре и на роторе, соответственно, *m* – число фаз обмотки; $\Phi_{\delta min}$ – минимальный поток в зазоре, который имеет место при

совпадении осей зубцов полюсного наконечника с осями пазов ротора. Он вычисляется посредством функции, аналогичной (3), но при подстановке вместо Λ_{δ} значения, соответствующего минимальной проводимости зазора $\Lambda_{\delta \min}$, которая является функцией относительной, по отношению к зазору, ширины открытия паза t_Z/δ , рассчитанной ранее [7] методом конечных элементов [8]. Последняя строка в таблице представляет собой косвенную проверку теплового состояния машины при выбранных значениях электромагнитных нагрузок и плотности тока в проводах обмотки. Полученное значение удельной тепловой нагрузки не должно превышать уровня 1500-2000 $\frac{A^2}{M \cdot MM^2}$, для класса изоляции *F*.

Критерием верного определения размеров пазов и зубцов является расположение максимального значения потока в зазоре Ф_{бтах} на насыщенном участке кривой намагничивания ферромагнитных участков магнитной цепи $F_{\text{Fe}}(\Phi)$, а минимального потока $\Phi_{\delta \min}$ – на начальном, ненасыщенном, участке этой кривой.

Из среднего значения можно выделить первую гармонику момента для одной фазы двигателя:

$$M_{1} = \frac{4M_{\rm cp}}{\pi} = 1,273M_{\rm cp},\tag{5}$$

и электромагнитный момент машины в целом:

$$M_{\rm M} = \frac{m}{2} M_{\rm I}.$$
 (6)

Спроектированный двигатель был изготовлен и испытан. Испытания подтвердили характеристики двигателя по развиваемому моменту.

IV. Выводы

Для повышения точности результатов при оценке момента в алгоритм проектирования индукторных следует ввести нелинейные процедуры расчета магнитной цепи графо-аналитическим методом, или его цифровым аналогом. Метод позволяет выполнить расчет магнитной цепи, замещающей ветвь с катушками одной фазы двигателя, до и после поворота ротора на половину зубцового деления из положения максимальной проводимости зазора.

Наличие размагничивающего фактора – перехода через «колено» кривой намагничивания ферромагнитных участков этой ветви при повороте ротора на половину зубцового деления может служить критерием правильности выбора параметров зубцовой зоны проектируемого двигателя и его обмоточных данных.

> © Смирнов А.Ю., 2022 © Кудряшов Д.А., 2022 © Уснунц-Кригер Т.Н., 2022

Поступила в редакцию 17.02.2022 Received 17.02.2022

Библиографический список

- Смирнов А.Ю. Электропривод с бесконтактными синхронными двигателями.
 М.: ИНФРА-М, 2021. 200 с. DOI: 10.12737/1192105
- [2] Смирнов А.Ю. Индукторные машины. Проектирование и вычислительный анализ (специальный курс). М.: Изд-во Форум, 2015. 192 с.
- [3] Иванов-Смоленский А.В. Электрические машины. М.: Энергия, 1980. 928 с.
- [4] Копылов И.П., Горяинов Ф.А., Клоков Б.К. [и др.]. Проектирование электрических машин. М.: Энергия, 1980. – 496 с.
- [5] Копылов И.П., Клоков Б.К. Справочник по электрическим машинам: в 2 т. Том 2. М.: Энергоатомиздат, 1989. – 688 с.
- [6] Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. М.: Энергоатомиздат, 1989. – 528с.
- [7] Смирнов А.Ю., Александрова Е.Н., Зимин А.Ю. Уточнение моделей расчета момента при проектировании явнополюсных индукторных двигателей // Электричество. 2020. № 11. С. 54-59. DOI: 10.24160/0013-5380-2020-11-53-59
- [8] Фисенко В.Г. Численные расчеты электромагнитных полей в электрических машинах на основе метода конечных элементов. М.: Изд-во МЭИ, 2002. – 44с.

References

- A.Yu. Smirnov, Elektroprivod s beskontaktnymi sinhronnymi dvigatelyami [Electric drive with contactless synchronous motors]. Moscow: INFRA-M, 2021. DOI: 10.12737/1192105 (in Russian).
- [2] A.Yu. Smirnov, Inductornye mashiny. Proectirovanie i vichislitel'niy analiz (special'nyj kurs) [Inductor machines. Design and computational analysis (special course)]. Moscow: Forum, 2015 (in Russian).
- [3] A.V. Ivanov-Smolenskiy, *Electricheskie mashiny [Electrical machines]*. Moscow: Energya, 1980 (in Russian).
- [4] I.P. Kopilov et al., *Proektirovanie elektricheskih mashin [Electrical machine's design]*. Moscow: Energya, 1980 (in Russian).
- [5] I.P. Kopilov and B.K. Klokov, Spravochnik po elektricheskim mashinam [Handbook on Electric Machines]. Vol. 2. Moscow: Energoatomizdat, 1989 (in Russian).
- [6] G.V. Zeveke, P.A. Ionkin, A.V. Netushil and S.V. Strahov, Osnovi teorii cepei [The foundations of circuit theory]. Moscow: Energoatomizdat, 1989 (in Russian).

- [7] A.Yu. Smirnov, E.N. Aleksandrova and A.Yu. Zimin, "Refining the torque calculation models in designing salient-pole inductor motors", *Electricity*, no. 11, pp. 54-59, 2020. DOI: 10.24160/0013-5380-2020-11-53-59
- [8] V.G. Fisenko, Chislennie rascheti elektromagnitnyh polej v elektricheskih mashinah na osnove metoda konechnih elementov [Tutorial on electromagnetic fields in electric machines calculation by FEM method]. Moscow: MPEI, 2002 (in Russian).

ИНФОРМАЦИЯ ОБ АВТОРАХ INFORMATION ABOUT THE AUTHORS

Смирнов Александр Юрьевич, доктор технических наук, профессор Нижегородского государственного технического университета им. Р.Е. Алексеева, ведущий инженерконструктор АО «Опытное конструкторское Бюро Машиностроения им. И.И. Африкантова», Нижний г. Новгород, Российская Федерация

Кудряшов Дмитрий Андреевич, аспирант Нижегородского государственного технического университета им. Р.Е. Алексеева, г. Нижний Новгород, Российская Федерация

Уснунц-Кригер Татьяна Николаевна, кандидат технических наук, заведующая кафедрой Выксунского филиала Национального исследовательского технологического университета «МИСиС», г. Нижний Новгород, Российская Федерация Alexander Yu. Smirnov, D. Sci. (Eng.), professor of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev, chief design engineer of the JSC "Afrikantov OKBM", Nizhny Novgorod, Russian Federation

Dmitry A. Kudryashov, postgraduate student of the Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russian Federation

Tatyana N. Usnunts-Kriger, Cand. Sci. (Eng.), head of the chair of the Vyksa Branch of the National University of Science and Technology "MISiS", Nizhny Novgorod region, Vyksa, Shimorskoye, Russian Federation